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Abstract A simple solution model that has lead to successful predictive 
equations for the partial molar excess properties of a solute in simple 
binary solvent mixtures containing only nonspecific interactions is ex- 
tended to include association between the solute and one of the solvent 
components. An expression is derived and tested for its ability to describe 
anthracene solubilities in binary solvent mixtures containing benzene. 
The best description of the experimental solubilities requires the for- 
mation of a 1:l anthracene-benzene complex, with a molarity-based 
equilibrium constant of KiC = 0.107 A4-l. In comparison, a stoichiometric 
complexation model which attributes all solubility enhancement to the 
formation of anthracene-benzene complexes requires a somewhat larger 
equilibrium constant (Kit S= 0.228 A4-1) to describe the solubility be- 
havior of anthracene in the benzene-n-heptane system. The results of 
these calculations illustrate that the determination of solute-solvent 
equilibrium constants from solubility data depends on the theoretical 
model used and the manner in which nonspecific interactions are incor- 
porated into the model. 

Keyphrases Solute-solvent interactions-determination of equilib- 
rium constants from solubility measurements, comparison of the stoi- 
chiometric and nearly ideal binary solvent models 0 Solvent systems- 
binary, anthracene solubility determinations in benzene mixtures using 
the nearly ideal binary solvent model 0 Solubility-binary solvent sys- 
tems, extension of the nearly ideal binary solvent model to include so- 
lute-solvent complexation 

Current approaches for predicting solubility often 
overlook the role of specific interactions in determining the 
solubilities of organic solids in organic solvents. As part of 
a continuing study on the thermochemical properties of 
a solute at high dilution in binary solvent mixtures (1-8), 
this paper considers the calculation of solute-solvent 
equilibrium constants from solubility measurements. 

Historically, the interpretation of solution nonideality 
has followed two dissimilar lines of reasoning: the physical 
approach originated by van Laar (9) and the chemical 
approach proposed by Dolezalek (10). The physical ap- 
proach may be described by a random distribution of 
molecules throughout the entire solution, while the 
chemical approach may be characterized by a specific 
geometric orientation of one molecule with respect to an 
adjacent molecule. Even in systems known to contain 
specific interactions, the need to properly account for 
nonspecific interactions is recognized. 

Arnett et al. (11,121 attempted a classical separation of 
specific and nonspecific interactions with their “pure” base 
calorimetric method for determining enthalpies of hy- 
drogen bond formation. The sensitivity of the numerical 
results to the selection of the model compound and inert 
solvent (13) points out the difficulty in separating the 
physical and chemical contributions of solution nonide- 
ality. Christian et al. (14,15) proposed a model for relating 
the thermodynamic properties of polar solutes involved 
in complex equilibria to those of analogous nonpolar so- 

lutes in the same solvent media. In the nonpolar analogue 
method, the polar solute is replaced by a hypothetical 
nonpolar molecule which has the same molecular volume 
and the same total energy of interaction with a nonpolar 
solvent as does the polar solute. Saluja et al. (16) used a 
somewhat similar rationale in their comparison of 
enthalpies of transfer of alkenes and the corresponding 
alkanes from the vapor state to methanol, dimethylform- 
amide, benzene, and cyclohexane, with the more exo- 
thermic values for the alkenes in methanol and dimeth- 
ylformamide attributed to dipole-induced dipole inter- 
actions between the solvent and the polarizable r-bond. 

Many of the remaining methods for studying association 
phenomena can be classified as solubility methods. That 
is, the increase in solubility of a solute a t  constant fugacity 
in a complexing-inert solvent mixture, relative to the sol- 
ubility in pure inert solvent, is generally attributed to the 
formation of molecular complexes. This primary as- 
sumption is common to several thermodynamic methods, 
such as the partition of solutes between two immiscible 
liquid phases, the measurement of infinite dilution GC 
partition coefficients, ’ e d  the increased solubility of solids. 
The techniques for calculating formation constants are 
essentially identical for all solubility methods, as are the 
difficulties in properly assessing what portion of the ob- 
served solubility enhancement is due to nonspecific in- 
teractions. 

In earlier papers, the experimental solubilities for benzil 
(5) and p-benzoquinone (6) in binary solvent mixtures 
containing carbon tetrachloride were reported, in which 
the mole fraction solubility of benzil and p -benzoquinone 
cover a 14- and 6-fold range, respectively. The experi- 
mental data were interpreted with solution models de- 
veloped previously for solubility in systems containing 
specific solute-solvent interactions and with models of 
purely nonspecific interactions. A stoichiometric com- 
plexation model based entirely on specific interactions 
(nonspecific interactions ignored) required several equi- 
librium constants to mathematically describe the experi- 
mental results, while the simple nearly ideal binary solvent 
(NIBS) model based on nonspecific interactions ade- 
quately described the observed solubilities without in- 
troducing a single equilibrium constant. 

The success of the NIBS approach in predicting the 
binary solvent effect on benzil and p-benzoquinone solu- 
bilities suggests the possibility that this model may provide 
a foundation for approximations of the physical interac- 
tions even in a system containing chemical interactions 
such as association between the solute and a complexing 
solvent. To pursue this idea further, the basic NIBS model 
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is extended to complexing systems and an expression is 
derived for the calculation of solute-solvent equilibrium 
constants from solubility measurements. Equilibrium 
constants for presumed benzene-anthracene complexes 
are calculated from the newly derived expression and are 
compared with values calculated from a stoichiometric 
complexation model based entirely on specific interactions. 
Although the magnitude of the calculated equilibrium 
constants are relatively small, and perhaps meaningless, 
the calculations do illustrate the importance of including 
nonspecific interactions, particularly in the case of weak 
association complexes. 

THEORETICAL 

Stoichiometric Complexation Model-Stoichiometric complexation 
models have been used frequently to quantitatively explain enhanced 
solubilities of a polar organic solute in binary mixtures containing an inert 
hydrocarbon and a polar cosolvent. The basic model assumes complex- 
ation between the solute, A, and an interacting cosolvent, C (17-21): 

A~ + c1 ~ A C   SAC^ 3 ..-Ac~. . . AC, 

Each reaction is described by an appropriate equilibrium constant with 
concentrations expressed in molarities: 

(Eq. 1) 

(Eq. 2) 

where CT,' is the saturation solubility of solute in pure inert hydrocarbon 
(assumed to represent the free solute concentration in binary mixtures 
as well) and Ccl is the free (uncomplexed) ligand concentration. This 
particular model assumes only a single solute molecule is present in each 
complex, but the mathematical form of the resulting equations is not 
significantly altered by additional solute molecules per complex. 

The total solubility of solute in any system, CX', can be expressed 
as: 

CAC, 
CACn-iCCi 

KXC" = 

CTt = C% + KLcCT,':'Cc, + KXcKic,CT,T& + . . . (Eq. 3) 

and the total concentration of complexing agent, Cc, as: 

If only 1:1 solute-solvent complexes are present, Eqs. 3 and 4 can be 
combined to give: 

Fractional change - CTt - CT: = K',cCc - (Eq. 5) 
in solubility CY; 1 + KicCY; 

and a plot of the fractional change in solubility uersus added ligand gives 
a straight line, with the equilibrium constant calculated from the 
slope. 

Direct graphical evaluation of equilibrium constants is also possible 
for systems having both 1:1 and 1:2 solute-solvent complexes. Suitable 
mathematical manipulations of Eqs. 3 and 4 result in: 

where a = KXcCT;/(l - KicCT;) and /3 = KXc,CT;/(l - KXCCT;)~. Plots 
of the left-hand side of Eq. 6 uersus CC - 2(CYt - CY:) gives a straight 
line. The two equilibrium constants, K i C  and K ~ C ? ,  are easily calculated 
from the slope and intercept. 

Graphical determination of the association constants is depicted in 
Figs. 1 and 2 for anthracene solubilities in binary solvent mixtures con- 
taining benzene, as reported previously (8). Inspection of the two figures 
reveal that the solubility data can be described adequately throughout 
most of the concentration region. The model, however, does not describe 
the solubility in pure benzene. Equilibrium constants calculated from 
the various slopes and intercepts are small in magnitude, e.g., linear 
least-squares analysis of the anthracene solubilities in benzene-n-heptane 
mixtures oia Eq. 6 gives K ~ c  = 0.228 M-' and K',cz = 0.034 M-I .  By re- 
porting these numerical values, we do not intend to imply that anthra- 
cene-benzene complexes actually exist in solution. Rather, the experi- 
mental solubilities are being used to illustrate the calculation of solute- 

solvent equilibrium constants from solubility data and to  show that the 
numerical values of these constants depend on how nonspecific interac- 
tions are incorporated into the theoretical model. This is particularly true 
for weak association complexes. 

Although the stoichiometric complexation model mathematically 
describes the experimental solubilities, one is naturally suspicious of 
whether the calculated values of Kicn truly represent specific solute- 
solvent interactions or the failure of the model t o  properly describe 
nonspecific interactions. As demonstrated in an earlier paper (51, ex- 
perimental solubilities of benzil in simple hydrocarbon mixtures do vary 
with solvent composition, and there is no reason to expect the free solute 
concentration to be independent of solvent composition in more complex 
systems. The failure of Eqs. 5 and 6 to allow for variation in free solute 
concentration has been one of the main criticisms of this model. 

A second limitation of this particular complexation model becomes 
apparent on writing the solubility expressions in terms of the solubility 
in the two pure solvents: (CT;)B and (CTt)C1. The complete description 
of experimental solubility in the pure complexing solvent through Eq. 
5 requires: 

where Cb refers to the concentration of pure complexing solvent in the 
saturated solution. Within limitations of the approximate relation- 
ships: 

ci = 103 xp/(x;VB + xO,Vc) (Eq. 8) 

and 

( c ~ ~ ) ,  = 103 ( x ~ ~ ) , l v ~  (Eq. 9) 

combination of Eq. 5 and 7-9 enables the solubility in binary solvent 
mixtures to be expressed as a mole fraction average of the values in the 
two pure solvents: 

xTt = X$(XTt)B + X$(XTt)C (Eq. 10) 

xi = 1 - xt = X,/(XB + XC) 

Predictions using Eq. 10 are off by as much as 50% for p-benzoquinone 
in n-heptane-carbon tetrachloride mixtures (6) and are off by a factor 
of two for benzil in the isooctane-carbon tetrachloride system (5). It is 
difficult to attribute the failure of Eq. 10 to specific solute-solvent in- 
teractions between the solutes and carbon tetrachloride or to the de- 
parture from infinite dilution, as the nearly ideal binary solvent approach 
describes these experimental solubilities to within a maximum deviation 
of 6% without introducing a single equilibrium constant. 

Equation 10 was derived specifically for binary solvent systems con- 
taining both a complexing and inert solvent, but comparable equations 
have been derived from quite dissimilar models. Sytilin (22) described 
solubility in mixed solvents as: 

CTt = KBCB + KcCc (Eq. 11) 

Ki = (CX')/C; i = B, C 

Equation 11 becomes identical to Eq. 10 when the saturation solubility 
is sufficiently small. Sytilin's expression is based on the assumption of 
solvational complexes between the solute and solvent and has been ap- 
plied to systems in which true association is generally not considered to 
exist (i .e. ,  iodine-n-alkane mixtures). While Eq. 10 does provide rea- 
sonable predictions for a rather large number of systems, the expression 
is obviously incapable of describing systems containing either a maximum 
or minimum mole fraction solubility. Classic examples are found in 
studies of phenanthrene (23) and 2-nitro-5-methylphenol (24) in cyclo- 
hexane-methylene iodide mixtures where the observed solubilities show 
maximum values that are almost twice that predicted by Eq. 10. Exten- 
sion of Eq. 11 to include mixed solvates has been proposed by Sytilin (25) 
as a means of explaining maximum solubilities, but even this explanation 
seems unsatisfactory since the existence of maximum solubility in these 
two systems is predicted by solubility parameter theory. 

In a series of papers devoted to infinite dilution solubility of volatile 
third components in binary mixtures of relatively nonvolatile liquids, 
Purnell and coworkers (26,27) have shown that a majority of published 

The solubility of the solute in the inert solvent ( C ~ ' ) B  equals the solubility of 
the uncornplexed solute in the inert solvent (C$)B. 
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Figure 1-Graphical determination of Kicfrom plots of the fraction 
change in solubility versus benzene molarity in several binary solvents 
consisting of benzene and n-hexane (a), n-heptane (O), cyclohexane 
(A), or isooctane (0). The basic model requires additional solute-sol- 
vent complexes to explain the nonlinear behavior (see Eqs. 3 and 4). 

data can be described by a simple linear relationship between the volume 
fraction and partition coefficient: 

KOR = $B(KOR)B + @c(KOR)c (Eq. 12) 

irrespective of the complexing nature of the solvents. C#JB and @C are vol- 
ume fractions of solvents B and C, respectively, K& is the infinite dilution 
gas-liquid partition coefficient in the mixted solvent, and ( K ~ ) B  and 
(K& refer to the corresponding values of KOR in the pure liquids. Using 
standard definitions relating partition and activity coefficients, Purnell 
and Vargas de Andrade (26) have shown that Eq. 12 is equivalent to: 

(Eq. 13) 

where 
to Raoult's law), with only the ideal molar volume approximation. 

of a solid through the thermodynamic relationship: 

is the infinite dilution activity coefficient of the solute (relative 

The activity coefficient of the solute can be related to the solubility 

aylid = X?'rXt 0%. 14) 

in which the activity of the solid depends on temperature only and is 
determined relative to the pure supercooled liquid. If the solubility is 
sufficiently small, the activity coefficient of the solute a t  infinite dilution 
may be approximated directly as the activity coefficient at saturation: 

YTt = ri (Eq. 15) 

Combination of Eqs. 13-15 yields an expression which is identical to Eq. 
10. 

The fact that  several dissimilar solution models reduce to a common 
mathematical expression in the limits of low solute solubility suggests 
that  there is often more than one interpretation of solution nonideality 
that will describe the observed solubility data. Each solution model, 
therefore, must be judged not only on its ability to describe a particular 
set of experimental data, but also on the validity and limitations of i t s  
underlying assumptions and simplifying approximations. 

Extension of the NIBS Approach to Solubility in Complexing 
Systems-The NIBS treatment has been shown to be quite dependable 
for estimating heats of solution (28,29), gas-liquid partition coefficients 
(1-3), and solubilities (4-8) in binary solvent systems that are free of 
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Figure 2-Graphical determination of KLc and KLcZ for anthracene 
in several binary solvents at 25". The binary mixtures contained benzene 
and n-hexane (a), n-heptane (O) ,  cyclohexane (A), or isooctane 
(0). 
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Figure 3-Comparison between experimental solubilities (0) and the 
predictions of Eq. 30 (-) for anthracene in binary mixtures of ben- 
zene-n-heptane. The free energy of mixing data for the binary solvent 
(ACFd is taken from measurements by Harris and Dunlop (32). 

association. The form of the NIBS equation which has been most suc- 
cessful for describing the excess chemical potential of solutes is based 
on a simple mixing model of a multicomponent system: 

N 
. . .  N = RT X ni In @, + X niVi ,X X @i@jAr,) (Eq. 16) 

in which n, is the number of moles of component i, V ,  is the molar volume 
of a pure liquid, @, is the volume fraction, and A,, is a binary interaction 
parameter that  is independent of solvent composition. The application 
of Eq. 16 to the quaternary system (Al,  B, C1, and AC) takes the form 
Of: 

AG"" = RT(nA,ln @A, + nBln @B + nclln @c, + nAcln @AC) 

1 = 1  [ i r 1  ) ( , = I  ,> i  

+ (nA,vA + nBVB + ~ C I V C I  + NAC~AC)(@AI@BAAIB 
+ @ A ~ @ c ~ A A ~ c ~  + @A,@ACAA,AC + @B@c,ABC, 

(Eq. 17) 

The only assumption is that the molar volume of the AC coyplex equals 
the sum of the molar volumes of components A and C, i .e . ,  VAC = VA + 
Vc. The chemical potentials of the individual components relative to the 
pure liquids (/.I;) are obtained through the appropriate differentiation: 

PA, - 

+ @B@ACABAC + @C~@ACAC,AC) 

= R T  In @A, + 1 - - ( V 8 V A  o 1 u t i o 3 
+ VA[bB(l - @AJAA,B + @ C i ( l  - @ A ~ ) A A ~ c ~  + @AC(1 - @ A ~ ) A A ~ A C  

- @B@c,ABC, - ~ B ~ A C A B A C  - @C~@ACAC,AC] (Eq. 18) - 
pg - pB = R T  In @B + 1 - - ( Qsolutio vB 3 

+ VB[@A,(~  - @ B ) A A ~ B  + @cl(l - @ B ) A B C ~  + @ A C ( ~  - @B)ABAC 

- @ A ~ @ c ~ A A ~ c ~  - @A,@ACAA,AC - @ c l @ ~ c A c l ~ c l  0%. 19) 

and 

In @c, + 1 - - 
frsolution 

+ vC"#'AI(1 - @ C ~ ) A A , C ,  + @ B ( l  - @Cl)ABCI + @AC(1 - ~ C J A C , A C  

- @ A ~ @ B A A ~ B  - @A,@ACAA~AC - ~B,$ACAB,AC]  

where frSOIUtlOn is the molar volume of the true solution a n d  

(Eq. 20) 

, 

As shown in many thermodynamic textbooks [e.g., Prigogine and Defay 
(30)], the chemical potential of stoichiometric component C (and also 
A) is equal to the chemical potential of the monomeric (uncomplexed) 
species in the solution: 

PC = PC1 (Eq. 22) 

Combining Eqs. 18-22, the Gibbs free energy of mixing can be written 
as: 

AC""" = RT nAln @ A ~  + nBln @B + ncln @cl + n~ + ng + nc 

] + ( ~ A v A  + ~ B v B  + ~ C ~ C ) ( @ A @ B A A ~ B  

I 
- (nAVA + nHVR + ncVc) 

VsoIution 

+ @A@C,AA~C, + @A@ACAA~AC + @C@A,AA,C~ + @C@BABC~ 

+ @C@ACAC,AC - @ A ~ @ c ~ A A ~ c ~  - @ A ~ @ A C A A ~ A C  
- @C,@ACAC,AC) (Eq. 23) 

where n~ = n~~ + ~ A C  and nc = ncl + ~ A C .  Equation 23 obviously con- 
tains far too many parameters for useful applications, but reasonable 
assumptions enable the number of parameters to be greatly reduced. 
Treatment of all interaction parameters involving the AC complex in a 
manner similar to that employed by Bertrand (31) for the chloroform- 
triethylamine complex leads to: 

AA,AC = W V A  + V C ) - ~ A A , C ~  (Eq. 24) 

AC,AC = VX(VA + VC)-~AA,C~ (Eq. 25) 

and 

Substitution of these approximations into Eq. 23, after suitable mathe- 
matical manipulations, yields the following expression for the Gibbs free 
energy: 

AG"" = RT f l ~  In @A, + f l ~  In QB + flc In @el + nA + ng 4- n c  

1 + (nAVA + n B V B  nCVC)($A'#'BAAiB 

I 
- ( f l A V A  + flBVB + nCVc) 

VSOIUtlUn 

+ ~ @ c A B c ,  + @A@CAA~C,) (Eq. 26) 

Using the equilibrium condition defined by: 

A l + C l = A C  

@AC 

@Ai@Ci 
K f c  = - (Eq. 27) 

it can be easily shown that the chemical potential of the solid solute (at 
saturation) is: 

p A  - p i  = RT In ayIid = R T  In @k + 1 - - 

+ v ~ ( 1  - @ X ' ) 2 ( @ 8 A ~ , ~  + @ ' & A A ~ c ~  - $~@'&ABCJ (Eq. 28) 

where & = 1 - $8 = @B/(@B + @c) and is the activity of the solid 
solute. This activity is defined as the ratio of the fugacity of the solid to  
the fugacity of the pure supercooled liquid and is calculated from: 

(Eq. 29) 

with the molar enthalpy of fusion (AHy)  a t  the normal melting point 
( T d .  

Inspection of Eq. 28 reveals that, for model systems obeying this ex- 
pression, the AIB and AA,c, interaction parameters can be eliminated 
from the basic model via the saturation solubilities in the pure solvents, 
and the A B C ~  parameter can be eliminated uia the excess Gibbs free en- 

ln asolid A = JTl ( A H y / R T 2 ) d T  
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ergy of the binary solvent mixture calculated according to Eq. 16. Per- 
forming these substitutions: 

-( l-@f)(l-%)] (Eq.31) 

and 

The liquid-phase compositions for Eqs. 31 and 32 refer to the saturated 
pure solvents. In the absence of solute-solvent complexation (KWc = O), 
the above expression reduces to an equation derived earlier (Eq. VV of 
Ref. 4) for systems containing only nonspecific interactions. 

Despite the complex appearance of Eq. 30, its predictive application 
to solubilities in mixed solvents is relatively straightforward and is similar 
in concept to the numerical example presented in an earlier paper (8) for 
systems containing only nonspecific interactions. The quantities (ACP); 
and (ACT); are calculated from the volume fraction solubility of the solid 
in the pure solvents using an assumed value for the equilibrium constant. 
These quantities, with the excess Gibbs free energy of the binary solvent 
mixture (usually obtained from the literature), are then used in Eq. 30 
to calculate @$using a reiterative approach. The overall volume fraction 
solubility, $Tt, can be calculated from the solubility of the uncomplexed 
solute and the equilibrium constant: 

(Eq. 33) 

The entire procedure can be repeated until the numerical value of KWc 
that best describes the experimental solubility in a particular binary 
solvent system is obtained. 

Graphical comparison between the experimental solubilities and 
predictions of Eq. 30 (with KWc = 1.91) are shown in Figs. 3 and 4 for 
anthracene in n-heptane-benzene and isooctane-benzene mixtures. 
Properties of the pure components were taken from a previous tabulation 
(8). Examination of these two figures indicates Eq. 30 can describe ade- 
quately the experimental data using a single equilibrium constant2. 
Readers are reminded that the calculation of association constants for 
a presumed anthracene-benzene complex does not imply the authors 
believe such a complex actually exists in solution. As in all cases, the 
presence of molecular complexes should be supported by independent 
measurements involving spectroscopy, calorimetry, etc. 

Although the numerical value of KWc = 1.91 is much larger than the 
equilibrium constant used in Eq. 6, direct comparison requires both 
constants to be based on an identical concentration scale. Doing this 
conversion: - _  

V A  VC 
KEAC = KWC (VA + vc) (Eq. 34) 

one finds that the molarity-based equilibrium constant of Eq. 6 ( K ~ C  = 
0.228 M - l )  is actually two times greater than the molarity-based equi- 
librium constant of Eq. 30 (Kit = 0.107 At'). These calculations further 
support our earlier observation (5) that equilibrium constants determined 
from solution models based entirely on specific interactions may not truly 
represent specific solute-solvent interactions, but rather, in some cases, 
the failure of the particular solution model to properly describe non- 
specific interactions. 

RESULTS AND DISCUSSION 
A simple solution model that has led to successful predictive equations 

for the thermochemical properties of a solute in simple binary solvent 

Improvements in the descriptive ability of Eq. 30 could be obtained by per- 
mittin thee uilibrium constant to vary from one solvent system to another. For 
exampfe, the%est description of the benzene-isooctane system required a slightly 
larger value for Kit. This fact is not too disturbing as many of the prevailing solution 
theories predict that complex formation constants will not be constant in different 
solvents, even if a maximum-randomness criterion is met by all the species involved 
in the formation reaction in each of the solvents (34,35). The numerical value quoted 
in the text is for the benzene-n-heptane system. 
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Figure 4-Comparison between experimental solubilities (@) and the 
predictions of Eq. 30 (--) for anthracene in binary mixtures of ben- 
zene-isooctane. The free energy of mixing data for the binary solvent 
is taken from an  article by Weissman and  Wood (33). 

Xbenzene 

systems containing only nonspecific interactions has been extended to 
include association between the solute and one of the solvent components. 
An expression has been derived and tested for its ability to describe an- 
thracene in binary solvent mixtures containing benzene. The best de- 
scription of the experimental solubilities required the postulation of a 
1:l anthracene-benzene complex, with a molarity-based equilibrium 
constant of KiC = 0.107 M-I .  In comparison, a stoichiometric complex- 
ation model that  attributes all solubility enhancement to the formation 
of anthracene-benzene complexes required a larger equilibrium constant 
(Kit = 0.228 A 4 - I )  t o  describe the six-fold mole fraction range of an- 
thracene solubilities in the benzene-n-heptane system. That the two 
equilibrium constants differ by a factor of two demonstrates the impor- 
tance of including nonspecific interactions in equilibrium constant cal- 
culations, particularly in the case of weak association complexes. 

Furthermore, it has been shown that several dissimilar solution models, 
developed previously for predicting solubility in binary solvent mixtures, 
reduce to a common mathematical expression in the limits of low solute 
solubility. Based on this observation, we conclude that there may be more 
than one interpretation of solution nonideality that will describe the 
observed solubility data. As criteria for selecting the best description of 
solution nonideality, we suggest that  each solution model should be 
judged on its ability to describe the thermochemical properties of the 
solute (in this case, solubility) and on the validity of the model's under- 
lying assumptions and simplifying approximations. 
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Abstract The relative potencies of a series of substituted anilines as 
acetyl acceptors in the enzymatic N-acetylation reaction have been 
correlated using physicochemical substituent constants (r, c), molecular 
connectivity indices (lx, lxv), and newly formulated information-theo- 
retic topological indices (IC, SIC). Results indicate a predominant role 
of the topological steric parameters in determining the rates of the N-  
acetyltransferase reaction. 

Keyphrases 0 p-Nitroaniline-determination of the N-acetylation 
reaction, topological indices 0 Topological indices-information-theo- 
retic, rate determination of the N-acetylation reaction, comparison with 
physicochemical constants and molecular connectivity indices, substi- 
tuted anilines N-Acetylation reaction-of substituted anilines, enzy- 
matic acetyltransferase, rate determination using information-theoretic 
topological indices 

The biochemical acetyl transfer reaction is important 
not only for normal physiological processes, but also in the 
extramicrosomal metabolism of therapeutically active 
compounds like isoniazid (1,2), p-aminosalicylic acid (3), 
sulfonamides (4, 5), and anticancer drugs-uiz., 6-ami- 
nonicotinamide (4). Acetyltransferase is capable of cata- 
lyzing the transfer of the acetyl moiety from acetyl CoA 
(CoASAc) to aliphatic and aromatic amines as well as the 

reversible transfer of an acetyl group between different 
aromatic amines (6,7). Therefore, one of the probable ways 
of elucidating the molecular basis of this reaction might 
arise from the study of acetyl group transfer rates from a 
particular acetylated amine (donor) to other variously 
substituted amines (acceptor) that vary in their physico- 
chemical and geometrical characteristics in a well-defined 
manner. 

Jacobson (6) studied the rates of acetyl transfer from 
p -(p-acetylaminopheny1azo)benzenesulfonate to  a series 
of substituted anilines in the presence of purified pigeon 
liver acetyltransferase. The electronegativity of the sub- 
stituent(s) was conjectured to have an overwhelming role 
on the rates of the reaction. This notion gained support 
from the quantum chemical studies of Perault and Pull- 
man (8) where the electronic charge on the amine nitrogen 
( E )  of the acceptor was shown to parallel the acetylation 
rate. Further studies by Hansch et al. (9) using substituent 
constants derived from physical organic model systems 
showed that a biparametric relationship using hydrophobic 
( T )  and electronic (a- or E )  parameters could adequately 
correlate the biological data. 
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